15.5 Lecture: Triple integrals in rectangular coordinates

Jeremiah Southwick

Spring 2019

3D Regions

If we have a function $w=f(x, y, z)$ of three variables, we can integrate $f(x, y, z)$ over a 3D region D.

3D Regions

If we have a function $w=f(x, y, z)$ of three variables, we can integrate $f(x, y, z)$ over a 3D region D.

We do this by chopping D up into small rectangular solids like the one below.

3D Regions

If we have a function $w=f(x, y, z)$ of three variables, we can integrate $f(x, y, z)$ over a 3D region D.

We do this by chopping D up into small rectangular solids like the one below.

Then the integral of $f(x, y, z)$ over D is defined as in previous sections for double integrals as the limit of a Riemann sum and is denoted

$$
\iiint_{D} f(x, y, z) d V
$$

Since we're chopping up the region D into small rectangular solids, the volume differential will be the product of the differentials in each coordinate direction.

Since we're chopping up the region D into small rectangular solids, the volume differential will be the product of the differentials in each coordinate direction.
Usually, we'll use the orders

$$
d V=d z d y d x \quad \text { or } \quad d V=d z d x d y
$$

Finding bounds for integration

Process for finding limits in $d z d y d x$ order (pg. 907-909)

Finding bounds for integration

Process for finding limits in $d z d y d x$ order (pg. 907-909)

1. Sketch D and its shadow in the $x y$-plane.

Finding bounds for integration

Process for finding limits in dzdydx order (pg. 907-909)

1. Sketch D and its shadow in the $x y$-plane.
2. Find z-limits of integration (the top and the bottom of the region).

Finding bounds for integration

Process for finding limits in $d z d y d x$ order (pg. 907-909)

1. Sketch D and its shadow in the $x y$-plane.
2. Find z-limits of integration (the top and the bottom of the region).

$$
f_{1}(x, y) \leq z
$$

Finding bounds for integration

Process for finding limits in $d z d y d x$ order (pg. 907-909)

1. Sketch D and its shadow in the $x y$-plane.
2. Find z-limits of integration (the top and the bottom of the region).

$$
f_{1}(x, y) \leq z \leq f_{2}(x, y)
$$

Finding bounds for integration

Process for finding limits in $d z d y d x$ order (pg. 907-909)

1. Sketch D and its shadow in the $x y$-plane.
2. Find z-limits of integration (the top and the bottom of the region).

$$
f_{1}(x, y) \leq z \leq f_{2}(x, y)
$$

3. Find y-limits of integration.

$$
g_{1}(x) \leq y \leq g_{2}(x)
$$

Finding bounds for integration

Process for finding limits in $d z d y d x$ order (pg. 907-909)

1. Sketch D and its shadow in the $x y$-plane.
2. Find z-limits of integration (the top and the bottom of the region).

$$
f_{1}(x, y) \leq z \leq f_{2}(x, y)
$$

3. Find y-limits of integration.

$$
g_{1}(x) \leq y \leq g_{2}(x)
$$

4. Find x-limits of integration.

$$
a \leq x \leq b
$$

Finding bounds for integration

Process for finding limits in $d z d y d x$ order (pg. 907-909)

1. Sketch D and its shadow in the $x y$-plane.
2. Find z-limits of integration (the top and the bottom of the region).

$$
f_{1}(x, y) \leq z \leq f_{2}(x, y)
$$

3. Find y-limits of integration.

$$
g_{1}(x) \leq y \leq g_{2}(x)
$$

4. Find x-limits of integration.

$$
a \leq x \leq b
$$

$$
\iiint_{D} f(x, y, z) d V=\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} \int_{z=f_{1}(x, y)}^{z=f_{2}(x, y)} f(x, y, z) d z d y d x
$$

Volume

Definition

The volume of a closed, bounded region D is

$$
\iiint_{D} d V
$$

As before with 2D regions and double integrals, we can calculate the volume of a 3D region D with a triple integral by putting $f(x, y, z)=1$ inside the triple integral over D.

Example

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

Region and shadow

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
The two functions are both paraboloids centered on the z-axis, one opening down and one opening up.

Region and shadow

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
The two functions are both paraboloids centered on the z-axis, one opening down and one opening up.

$$
f(x, y)=x^{2}+3 y^{2}
$$

Region and shadow

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
The two functions are both paraboloids centered on the z-axis, one opening down and one opening up.

$$
f(x, y)=x^{2}+3 y^{2}
$$

$$
g(x, y)=8-x^{2}-y^{2}
$$

Region and shadow

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and
$z=8-x^{2}-y^{2}$.
The intersection of the two surfaces is $x^{2}+3 y^{2}=8-x^{2}-y^{2}$, or

Region and shadow

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and
$z=8-x^{2}-y^{2}$.
The intersection of the two surfaces is $x^{2}+3 y^{2}=8-x^{2}-y^{2}$, or

$$
x^{2}+2 y^{2}=4
$$

Region and shadow

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
The intersection of the two surfaces is $x^{2}+3 y^{2}=8-x^{2}-y^{2}$, or

$$
x^{2}+2 y^{2}=4
$$

In the $x y$-plane, this looks like an ellipse.

Region and shadow

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and
$z=8-x^{2}-y^{2}$.
The intersection of the two surfaces is $x^{2}+3 y^{2}=8-x^{2}-y^{2}$, or

$$
x^{2}+2 y^{2}=4
$$

In the $x y$-plane, this looks like an ellipse.

Finding the z-bounds

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

Question
What surface describes the bottom of the region?

Finding the z-bounds

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

Question
What surface describes the bottom of the region?
Answer
$f_{1}(x, y)=x^{2}+3 y^{2}$

Finding the z-bounds

Example
Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

Question
What surface describes the bottom of the region?
Answer
$f_{1}(x, y)=x^{2}+3 y^{2}$
Question
What surface describes the top of the region?

Finding the z-bounds

Example
Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

Question
What surface describes the bottom of the region?
Answer
$f_{1}(x, y)=x^{2}+3 y^{2}$
Question
What surface describes the top of the region?
Answer $f_{1}(x, y)=8-x^{2}-y^{2}$

Finding the z-bounds

Example
Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

Question
What surface describes the bottom of the region?
Answer
$f_{1}(x, y)=x^{2}+3 y^{2}$
Question
What surface describes the top of the region?
Answer $f_{1}(x, y)=8-x^{2}-y^{2}$

Thus $x^{2}+3 y^{2} \leq z \leq 8-x^{2}-y^{2}$.

Finding the y-bounds

Now we look at the shadow of the region in the $x y$-plane.

Finding the y-bounds

Now we look at the shadow of the region in the $x y$-plane.

Question
What are the top and bottom of the shadow?

Finding the y-bounds

Now we look at the shadow of the region in the $x y$-plane.

Question
What are the top and bottom of the shadow?
Answer

$$
-\sqrt{2-\frac{x^{2}}{2}} \leq y \leq \sqrt{2-\frac{x^{2}}{2}}
$$

Finding the x-bounds

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

Question
What is the smallest or largest x can be?
Answer
$-2 \leq x \leq 2$

Example

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

$$
\begin{gathered}
x^{2}+3 y^{2} \leq z \leq 8-x^{2}-y^{2} \\
-\sqrt{2-\frac{x^{2}}{2}} \leq y \leq \sqrt{2-\frac{x^{2}}{2}} \\
-2 \leq x \leq 2
\end{gathered}
$$

Example

Example

Find the volume of the region D enclosed by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

$$
\begin{gathered}
x^{2}+3 y^{2} \leq z \leq 8-x^{2}-y^{2} \\
-\sqrt{2-\frac{x^{2}}{2}} \leq y \leq \sqrt{2-\frac{x^{2}}{2}} \\
-2 \leq x \leq 2
\end{gathered}
$$

Thus the volume is given by

$$
\int_{x=-2}^{x=2} \int_{y=-\sqrt{2-\frac{x^{2}}{2}}}^{y=\sqrt{2-\frac{x^{2}}{2}}} \int_{z=x^{2}+3 y^{2}}^{z=8-x^{2}-y^{2}} 1 d z d y d x
$$

